
Understanding Protein Aggregation during Thermal 
and Freeze Processing of Animal-Based Foods

1.	Introduction
Proteins are among the most versatile biomolecules in 
animal-derived foods, serving not only as primary 
sources of essential amino acids but also as structural and 
functional components that shape food quality. In foods 
such as meat, �ish, milk, and eggs, proteins contribute to 
solubility, water-holding capacity, gelation, foaming, and 
emulsi�ication—functional properties that underpin 
textural integrity, sensory appeal, and consumer 
acceptance. From a nutritional standpoint, proteins 
supply indispensable amino acids required for growth, 
repair, and metabolic functions. However, proteins are 
inherently sensitive to environmental conditions [1]. 
Their native conformation is stabilized by a delicate 
balance of covalent and non-covalent forces, including 
hydrogen bonding,  e lectrostat ic  interact ions , 
hydrophobic associations, and disul�ide linkages. 
Processing and storage often disrupt this balance, 
causing conformational changes that may be reversible 
(denaturation) or irreversible (aggregation).
Protein aggregation, in particular, is a critical structural 
modi�ication with profound implications for food quality. 
It can be de�ined as the self-association of unfolded or 
partially unfolded proteins into higher-order complexes 
via intermolecular forces. Aggregation may be bene�icial 
or detrimental depending on the food matrix and 
processing goals. For example, controlled aggregation is 
desirable in gelation (egg custards, surimi gels, yogurt), 
where it contributes to structure and mouthfeel.
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Conversely, uncontrolled aggregation can lead to 
undesirable toughness, dryness, phase separation, or 
reduced digestibility, thereby undermining both sensory 
attributes and nutritional value [2], the diverse food 
processing methods, thermal and freeze processing are 
two of the most prevalent in the animal-based food 
industry. Both play indispensable roles in ensuring safety, 
extending shelf life, and facilitating product distribution 
across global markets. Yet, both impose stresses that 
profoundly affect protein stability and aggregation 
behavior.

Thermal	processing	and	its	effects
Heat treatments such as cooking, pasteurization, 
blanching, and sterilization are applied widely to 
eliminate pathogenic microorganisms and inactivate 
spoilage enzymes. However, heat also acts as a major 
driver of protein denaturation and aggregation. Elevated 
temperatures disrupt hydrogen bonds and destabilize 
secondary and tertiary structures, exposing hydrophobic 
groups that are normally buried within the protein core. 
These exposed regions can interact with other unfolded 
proteins, initiating aggregation through hydrophobic 
clustering, hydrogen bonding, and disul�ide exchange 
reactions [3]. The extent of heat-induced aggregation 
depends on multiple variables, including the type of 
protein, heating temperature and duration, pH, and ionic 
strength. For instance, whey proteins in milk begin to 
aggregate above 70 °C through disul�ide cross-linking,
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which can alter milk stability and functionality in cheese 
production. In meat, myo�ibrillar proteins such as myosin 
undergo denaturation and aggregation during cooking, 
in�luencing tenderness, water retention, and juiciness. 
While moderate heat treatments can generate desirable 
textures, excessive heating often results in tough, dry 
products with reduced nutritional quality due to 
impaired digestibility of aggregated proteins.

Freeze	processing	and	its	effects
Freezing is another essential preservation technique, 
widely valued for extending shelf life and maintaining 
nutritional quality. However, freeze processing is not 
without drawbacks. The formation of ice crystals during 
freezing leads to physical disruption of muscle �ibers in 
meat and �ish, destabilization of protein–water 
interactions, and alterations in pH and ionic strength in 
the unfrozen fraction. These changes destabilize native 
protein conformations, favoring aggregation [4]. The rate 
of freezing plays a pivotal role: slow freezing produces 
larger ice crystals that cause more extensive damage, 
while rapid freezing generally preserves protein integrity 
more effectively. Furthermore, repeated freeze–thaw 
cycles exacerbate structural destabilization, leading to 
cumulative aggregation and quality loss. In �ish, freeze-
induced myosin aggregation results in reduced elasticity 
and water-holding capacity, producing a �ibrous and less 
appealing texture. In dairy products, freezing can 
destabilize casein micelles, causing protein precipitation 
and syneresis upon thawing.

Aggregation	as	a	double-edged	sword
Protein aggregation is thus a double-edged sword in food 
processing. On one hand, aggregation is necessary for the 
development  of  many desirable  textures  and 
structures—such as gels, foams, and emulsions—that 
de�ine consumer expectations of speci�ic products. On the 
other hand, uncontrolled or excessive aggregation 
undermines sensory attributes, reduces protein 
solubility, and diminishes digestibility, thereby affecting 
both nutritional quality and consumer acceptance [5]. 
Importantly, aggregation also in�luences product stability 
by interacting with lipids and other biomolecules, 
potentially accelerating oxidative deterioration. 
Understanding protein aggregation during thermal and 
freeze processing is  vital  for  food scientists , 
technologists, and industry stakeholders aiming to 
balance safety, quality, and nutritional outcomes. This 
review critically examines the mechanisms underlying 
protein aggregation in animal-based foods, highlighting 
how different processing stresses in�luence structural 
transitions. Case-speci�ic insights are provided for major 
categories including meat, �ish, milk, and eggs, as these 
foods represent the most protein-rich animal-derived 
commodities consumed worldwide. Furthermore, the 
review discusses the consequences of aggregation for 
functional and nutritional properties and outlines 
technological strategies—such as encapsulation, use of 
c r y o p r o t e c t a n t s ,  a n d  e m e r g i n g  p r o c e s s i n g 
technologies—that can mitigate negative effects while 
enhancing positive ones [6]. An integrating molecular-
level insights with practical applications, this review aims 
to deepen understanding of protein aggregation 
phenomena, bridge the gap between theory and practice, 
and inform the development of optimized processing 
methods. 

Such advancements are essential not only for ensuring 
the quality and nutritional value of animal-derived foods 
but also for addressing growing consumer demand for 
safe, minimally processed, and high-quality protein 
products in a competitive global market.

2.	Mechanisms	of	Protein	Aggregation
2.1	General	Principles
Proteins in their native state exist in a �inely balanced 
three-dimensional structure, stabilized by a combination 
of non-covalent interactions—such as hydrogen bonds, 
hydrophobic associations, and electrostatic forces—and 
covalent disul�ide linkages. This intricate structural 
equilibrium allows proteins to maintain solubility, 
functionality, and biological activity. Aggregation is 
initiated when this balance is disrupted, leading to the 
partial or complete unfolding of the protein molecule. 
Once unfolded, normally buried residues such as 
hydrophobic side chains or sul�hydryl groups become 
exposed, rendering the protein prone to intermolecular 
interactions [7]. Aggregation can result in diverse 
structural outcomes depending on the extent of 
denaturation, environmental conditions, and processing 
stresses. Proteins may form amorphous aggregates 
characterized by random associations, or ordered 
aggregates such as amyloid-like �ibrils, in which 
intermolecular β-sheets predominate. While amorphous 
aggregates are common in food systems and often 
manifest as insoluble precipitates, �ibrillar aggregates are 
more typical in long-term storage or under extreme 
denaturing conditions. Importantly, aggregation is often 
irreversible, leading to permanent changes in functional 
properties such as solubility, gelation, and digestibility, 
aggregation is in�luenced by intrinsic protein properties 
(molecular weight, amino acid composition, isoelectric 
point) and extrinsic factors including temperature, pH, 
ionic strength, water activity, and interactions with lipids 
or carbohydrates [8]. Thermal and freeze processing, two 
of the most common preservation methods, exert distinct 
but overlapping stresses that drive protein aggregation 
through different molecular pathways.

2.2	Thermal-Induced	Aggregation
Heat is one of the strongest destabilizing forces for 
protein structures. As temperature rises, the kinetic 
energy of protein molecules increases, disrupting 
hydrogen bonds and weakening van der Waals 
interactions that stabilize secondary and tertiary 
conformations. This leads to unfolding, exposure of 
hydrophobic domains, and increased molecular mobility, 
all of which favor intermolecular association.
The pathways of heat-induced aggregation are governed 
by three main mechanisms:
Ÿ Hydrophobic	interactions: Upon unfolding, buried 

hydrophobic residues become solvent-exposed. 
These nonpolar regions spontaneously cluster 
together to minimize contact with water, forming the 
initial nucleus of an aggregate.

Ÿ Disul�ide	 bond	 formation: Heating accelerates 
thiol–disul�ide exchange reactions. Cysteine residues, 
once exposed, undergo oxidation to form disul�ide 
bridges, stabilizing aggregates in a covalent manner.

Ÿ Electrostatic	rearrangement: At certain pH values 
close to a protein's isoelectric point, reduced 
electrostatic repulsion allows proteins to approach 
more closely and interact, thereby facilitating 
aggregation.
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The extent and nature of thermal aggregation depend 
strongly on processing conditions. Mild heating may 
produce reversible aggregates that can dissociate upon 
cooling, while severe heating typically results in 
irreversible aggregates and precipitation. The impact 
also varies across protein systems: myo�ibrillar proteins 
in meat form gels upon heating, contributing to desirable 
textural characteristics, whereas whey proteins in milk 
aggregate extensively above 70 °C, affecting solubility and 
digestibility [9], protein concentration, ionic strength, 
and the presence of sugars or polyphenols can modulate 
aggregation. For example, salts may shield electrostatic 
repulsion and accelerate aggregation, while certain 
carbohydrates exert protective effects by stabilizing 
protein structure during heating.

2.3	Freeze-Induced	Aggregation
Unlike thermal processing, freezing subjects proteins to 
physical and chemical stresses associated with ice 
formation and phase separation. As water crystallizes, 
solutes—including proteins, salts, and sugars—become 
concentrated in the unfrozen phase, a process known as 
cryoconcentration. This localized increase in ionic 
strength and pH changes destabilizes native protein 
conformations, leading to unfolding and aggregation.
Several important mechanisms underpin freeze-induced 
aggregation:
Ÿ Ice	crystal	damage: Large ice crystals formed during 

slow freezing can physically disrupt cellular and 
protein structures, leading to denaturation and 
aggregation.

Ÿ Cryoconcentration	and	pH	shifts: As ice excludes 
solutes, the remaining unfrozen fraction becomes 
more concentrated, often lowering protein solubility 
and stability.

Ÿ Interfacial	 denaturation: Proteins adsorb at the 
ice–water interface, where partial unfolding occurs. 
Repeated freeze–thaw cycles exacerbate this effect, 
causing cumulative aggregation and precipitation.

The rate of freezing is critical in determining the extent of 
aggregation. Rapid freezing promotes the formation of 
smaller ice crystals, which exert less mechanical damage 
and minimize cryo-concentration, and preserving 
protein integrity. Conversely, slow freezing favors larger 
crystals that damage cellular matrices and increase 
protein destabilization [10]. Repeated freeze–thaw 
cycles are particularly detrimental in meat and �ish 
products, leading to progressive myosin aggregation, 
reduced water-holding capacity,  and textural 
deterioration. In dairy systems, freezing destabilizes 
casein micelles and whey protein interactions, which may 
manifest as syneresis in frozen–thawed products such as 
yogurt and ice cream. Both thermal and freeze processing 
disrupt protein stability, though via different pathways. 
Heat primarily causes chemical and structural 
denaturation leading to hydrophobic clustering and 
disul�ide cross-linking, while freezing destabilizes 
proteins through ice-induced mechanical stress, solute 
concentration, and interfacial denaturation. In both 
cases, aggregation alters the solubility, texture, and 
digestibility of animal-derived foods. Understanding 
these mechanisms provides a foundation for developing 
targeted strategies to mitigate detrimental effects while 
harnessing bene�icial aggregation in functional food 
system

Table	1.	Major	Proteins	in	Animal-Based	Foods	and	Their	Aggregation	Behavior	under	Thermal	and	Freeze	Processing

Table	2.	Consequences	of	Protein	Aggregation	in	Animal-Based	Foods

Table	3.	Strategies	to	Control	Protein	Aggregation	during	Processing
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3.	Protein	Aggregation	in	Animal-Based	Foods
Protein aggregation in animal-derived foods is strongly 
in�luenced by the type of protein present, its structural 
features, and the processing environment. Different food 
matrices exhibit distinct aggregation behaviors during 
thermal and freeze processing, leading to diverse 
outcomes in terms of texture, digestibility, stability, and 
sensory perception [11]. The following subsections 
highlight the aggregation characteristics of meat, �ish, 
milk, and egg proteins, which represent the most widely 
consumed animal-based foods globally.

3.1	Meat	Proteins
Meat proteins are generally categorized into myo�ibrillar 
proteins (e.g., myosin, actin, tropomyosin), sarcoplasmic 
proteins (enzymes and myoglobin), and stromal proteins 
(collagen and elastin). Among these, myo�ibrillar 
proteins are the most functionally signi�icant in terms of 
gelation, emulsi�ication, and water-holding capacity [12]. 
During thermal processing, myosin and actin undergo 
sequential denaturation, typically beginning at 40–50 °C 
for myosin and around 70 °C for actin. Heat-induced 
unfolding exposes hydrophobic residues and sul�hydryl 
groups, leading to aggregation and gel formation. This 
aggregation is responsible for the �irmness and 
cohesiveness of cooked meat products. However, 
excessive aggregation reduces water-holding capacity, 
resulting in dry, tough textures. Heat also affects 
sarcoplasmic proteins, which may precipitate and 
contribute to �lavor and color changes [13]. In freeze 
processing, the formation of ice crystals disrupts 
myo�ibrillar protein integrity and promotes oxidative 
modi�ications. Myosin, in particular, is prone to 
a g g r e g a t i o n  d u r i n g  f r o z e n  s t o r a g e  d u e  t o 
cryoconcentration of salts and enhanced lipid–protein 
interactions. These changes reduce solubility and impair 
functional properties, manifesting as reduced juiciness, 
increased drip loss, and decreased tenderness upon 
thawing. Lipid oxidation often accelerates protein cross-
linking, further aggravating textural deterioration. Rapid 
freezing and the use of  cryoprotectants (e .g . , 
polyphosphates, sugars) can help mitigate aggregation 
and preserve meat quality.

3.2	Fish	Proteins
Fish proteins share many structural similarities with 
mammalian proteins but are more thermolabile, 
re�lecting adaptation to aquatic environments with lower 
body temperatures. Myo�ibrillar proteins such as myosin 
and actin are particularly vulnerable to denaturation and 
aggregation. During freezing, �ish proteins are prone to 
signi�icant quality loss. Myosin aggregation is common, 
leading to decreased solubility, toughness, and the 
phenomenon known as “gaping,” where muscle �ibers 
separate visibly in thawed �illets. The extent of 
aggregation depends on species, fat content, and storage 
conditions. Lean �ish such as cod are more sensitive to 
freeze-induced aggregation compared to fatty �ish such as 
salmon, although lipid oxidation can exacerbate protein 
damage in the latter. Repeated freeze–thaw cycles worsen 
these effects, resulting in reduced elasticity and water-
holding capacity [14]. In thermal processing, �ish proteins 
denature at relatively lower temperatures compared to 
mammalian proteins. Controlled thermal aggregation is 
bene�icial in surimi production, where myosin gelation 
creates the characteristic elastic texture of �ish-based 

gels. However, excessive heating reduces digestibility and 
leads to textural hardening. The challenge lies in 
balancing microbial safety and textural optimization 
while avoiding undesirable aggregation.

3.3	Milk	Proteins
Milk contains two main protein classes: caseins (αs-, β-, 
and κ-casein) and whey proteins (β-lactoglobulin, α-
lactalbumin, serum albumin). These proteins exhibit 
distinct aggregation behaviors during processing. 
Thermal aggregation primarily involves whey proteins. β-
lactoglobulin, which contains a reactive thiol group, 
begins to denature and aggregate above 70 °C. The 
aggregation process often involves disul�ide bond 
formation with κ-casein, altering micellar stability. This 
mechanism has both positive and negative consequences: 
while aggregation contributes to yogurt and cheese 
structure, excessive aggregation in �luid milk can cause 
sedimentation, reduced solubility, and impaired 
digestibility [15]. During freezing, milk proteins undergo 
destabilization due to cryoconcentration and ice crystal 
formation. Casein micelles may destabilize, leading to 
phase separation and syneresis, particularly in frozen 
dairy desserts such as ice cream and frozen yogurt. Whey 
proteins also aggregate at ice–water interfaces, 
contributing to texture defects and graininess upon 
t h aw i n g .  T h e  a d d i t i o n  o f  s t a b i l i z e r s  s u c h  a s 
polysaccharides or cryoprotectants like lactose and 
sucrose is a common strategy to minimize freeze-induced 
aggregation in dairy systems.

3.4	Egg	Proteins
Egg proteins, found in both yolk and white, serve as 
versatile functional ingredients in culinary and industrial 
applications. Major egg white proteins include 
ovalbumin, ovotransferrin, ovomucoid, and lysozyme, 
while yolk proteins are dominated by lipoproteins such as 
livetin and phosvitin. Thermal aggregation plays a central 
role in the culinary functionality of eggs. Ovalbumin and 
ovotransferrin denature and aggregate upon heating, 
forming the characteristic gels in boiled or scrambled 
eggs and providing foaming capacity in baked goods. 
These processes are desirable for texture and structure 
development. However, excessive or uncontrolled 
aggregation reduces solubility and may impair 
digestibility by limiting enzymatic access to peptide 
bonds. Additionally, overcooking can lead to sulfur-
containing off-�lavors due to hydrogen sul�ide release 
from aggregated proteins [16]. Freeze-induced 
aggregation presents signi�icant challenges in egg 
storage .  Freezing  destabi l izes  protein–water 
interactions, leading to gelation and water loss in thawed 
eggs. This is especially problematic for egg whites, which 
may become rubbery and exhibit reduced foaming 
capacity after thawing. Cryoprotectants such as sucrose, 
glycerol, or salts are often used in frozen egg products to 
inhibit aggregation and preserve functional properties. In 
industrial applications, spray-drying is sometimes 
favored over freezing to circumvent these quality losses, 
though it introduces its own thermal aggregation 
concerns.

4.	Consequences	of	Protein	Aggregation
Protein aggregation in animal-based foods has wide-
ranging consequences that extend beyond simple 
structural alterations. 
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The changes manifest at the molecular, functional, 
nutritional, and sensory levels, ultimately shaping 
consumer perception and market value of the �inal 
product [17]. Understanding these consequences is 
crucial for distinguishing between desirable aggregation, 
which contributes to functionality, and detrimental 
aggregation, which undermines quality.

4.1	Texture	Modi�ication
One of the most visible consequences of protein 
aggregation is modi�ication of texture. Proteins play a 
central role in gelation, emulsi�ication, and water-holding 
capacity, all of which determine the structural and 
mechanical properties of foods. Controlled aggregation, 
such as that observed in yogurt, cheese, or surimi, 
provides �irmness, elasticity, and structural integrity. 
However, uncontrolled aggregation often compromises 
these properties [18]. In meat products, heat-induced 
aggregation of myo�ibrillar proteins can enhance gel 
formation, contributing to desirable �irmness in products 
like sausages. Yet excessive aggregation reduces water-
holding capacity, leading to dry, tough textures and 
increased cooking loss. In frozen �ish, aggregation of 
myosin and actin manifests as reduced elasticity and 
gaping, negatively affecting consumer perception. In 
dairy systems, whey protein aggregation during 
sterilization can create undesirable sediment, while in 
eggs, over-aggregation of egg white proteins produces 
rubbery gels.

4.2	Nutritional	Implications
Aggregation also affects the nutritional quality of animal-
based foods. Native proteins are generally more 
accessible to digestive enzymes, while aggregated 
proteins may limit enzyme penetration, reducing 
hydrolysis ef�iciency. Excessive aggregation therefore 
decreases protein digestibility and bioavailability of 
essential amino acids. For example, β-lactoglobulin 
aggregates formed during high-heat milk processing 
resist enzymatic digestion, reducing nutritional 
utilization. Similarly, heavily aggregated �ish proteins 
formed during prolonged frozen storage demonstrate 
reduced digestibility [19]. aggregation may alter the 
release and availability of bioactive peptides. Controlled 
denaturation can enhance peptide release with 
antihypertensive or antioxidant properties, but over-
aggregation traps these peptides within insoluble 
complexes, diminishing their bioactivity. Thus, the 
balance between bene�icial and detrimental effects is 
delicate and highly dependent on processing intensity.

4.3	Sensory	Attributes
Sensory perception of animal-based foods is strongly 
in�luenced by aggregation. Aggregated proteins modify 
texture, appearance, and mouthfeel, which directly affect 
consumer acceptance. In meats, excessive aggregation 
manifests as hardness and dryness, while in dairy 
systems it may cause syneresis (whey separation) that 
consumers perceive as spoilage. Frozen–thawed �ish 
often displays gaping and loss of translucency, both 
consequences of aggregation-related structural changes 
[14]/ Flavor perception can also be indirectly in�luenced. 
Aggregated proteins may sequester volatile compounds, 
reducing �lavor release, or interact with lipids, leading to 
oxidative byproducts that produce rancid �lavors. 

In eggs, overcooked or aggregated proteins release 
hydrogen sul�ide, creating sulfurous off-�lavors. These 
negative sensory impacts underscore the importance of 
carefully managing aggregation during processing.

4.4	Shelf-Life	and	Stability
Protein aggregation affects not only immediate quality 
but also long-term stability and shelf life. Aggregated 
proteins may interact with lipids, accelerating lipid 
oxidation through radical transfer mechanisms. This is 
particularly problematic in high-fat systems such as meat 
and �ish, where protein–lipid interactions lead to 
rancidity, discoloration, and nutrient loss during storage 
[6-9]. Freeze-induced aggregation also contributes to 
drip loss in thawed products, reducing yield and 
economic value. In dairy, destabilized protein aggregates 
can lead to sedimentation, phase separation, and reduced 
shelf stability in sterilized or frozen products. 
Consequently, controlling aggregation is essential not 
only for maintaining immediate sensory and nutritional 
quality but also for preserving product stability 
throughout distribution and storage.

5.	Strategies	to	Control	Protein	Aggregation
Given the signi�icant consequences of  protein 
aggregation, food technologists have developed a range of 
strategies to mitigate its detrimental effects while 
preserving or enhancing bene�icial functionality. These 
strategies span from conventional  processing 
optimization to the adoption of novel technologies 
designed to apply less structural stress to proteins.

5.1	Processing	Optimization
One of the simplest approaches to minimizing 
aggregation is optimizing processing conditions. In 
thermal treatments, moderate heat application (e.g., 
pasteurization instead of sterilization) can reduce 
protein denaturation while still ensuring microbial 
safety. In meat cooking, adopting sous-vide methods at 
controlled low temperatures minimizes protein 
aggregation and preserves tenderness [7-11[. In freeze 
processing, the rate of freezing is critical. Rapid freezing 
produces smaller ice crystals, reducing mechanical 
damage and cryoconcentration effects that promote 
aggregation. Blast freezing or cryogenic freezing with 
liquid nitrogen are effective techniques for maintaining 
protein integrity. Additionally, minimizing freeze–thaw 
cycles during storage and distribution helps reduce 
cumulative aggregation damage.

5.2	Cryoprotectants	and	Stabilizers
Cryoprotectants are widely used to protect proteins 
during freezing. Sugars (sucrose, trehalose), polyols 
(glycerol, sorbitol), and certain proteins (gelatin, 
caseinates) stabilize protein structures by replacing 
wa te r  m o l e c u l e s  a n d  p reve n t i n g  i c e - i n d u c e d 
denaturation. In frozen �ish and meat, cryoprotectants 
maintain myosin solubility and water-holding capacity, 
preserving texture and juiciness [12-14]. Stabilizers such 
as hydrocolloids (e.g., guar gum, carrageenan) are often 
used in dairy and egg products to prevent syneresis and 
phase separation. These compounds provide a protective 
matrix around proteins, reducing the likelihood of 
aggregation during both heating and freezing.
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5.3	Encapsulation	and	Coatings
Encapsulation of proteins or protein-rich systems in 
biopolymer matrices offers another strategy to mitigate 
aggregation. Encapsulation using alginate, chitosan, or 
lipid-based carriers shields proteins from thermal and 
freeze stresses, reducing structural damage. In meat 
systems, edible coatings with antioxidants and 
cryoprotectants slow aggregation by preventing 
oxidative cross-linking. Similarly, coating �ish �illets with 
polysaccharides or proteins before freezing reduces ice 
crystal damage and aggregation of myo�ibrillar proteins.

5.4	Novel	Processing	Technologies
E m e rg i n g  n o n - t h e rm a l  o r  m i n i m a l ly  t h e rm a l 
technologies show promise in controlling aggregation by 
applying less severe stresses compared to conventional 
methods.
Ÿ High-pressure	 processing	 (HPP):  Applies 

hydrostatic pressure to inactivate microbes while 
preserving protein structure. Although some 
denaturation occurs, pressure-induced aggregation is 
often reversible and less detrimental than thermal 
aggregation.

Ÿ Ultrasound	 processing: Enhances heat and mass 
transfer, allowing reduced thermal load. At controlled 
intensities, ultrasound can improve protein 
functionality while minimizing irreversible 
aggregation.

Ÿ Pulsed	 electric	 �ields	 (PEF): Induces microbial 
inactivation with minimal heating, preserving protein 
integrity in dairy and liquid egg systems.

Ÿ Microwave-assisted	 heating: Provides rapid, 
uniform heating that reduces localized overheating 
and aggregation compared to conventional thermal 
processing.

Protein aggregation represents a critical challenge in the 
processing of animal-based foods, with consequences 
ranging from textural changes to nutritional loss and 
reduced shelf  l i fe.  However,  through strategic 
control—whether via processing optimization, use of 
cryoprotectants, encapsulation, or adoption of novel 
technologies—food scientists can mitigate detrimental 
aggregation while leveraging its functional bene�its. 
Moving forward, integrating these approaches with 
molecular-level  understanding of  aggregation 
mechanisms will be essential for tailoring strategies to 
speci�ic food systems and advancing the development of 
high-quality animal-derived products [12-14].

6.	Conclusion	and	Future	Perspectives
Protein aggregation is an inevitable yet complex 
phenomenon in the thermal and freeze processing of 
animal-based foods. On one hand, controlled aggregation 
underpins desirable functional properties such as 
gelation in meat and �ish, foam stability in eggs, and 
textural structuring in dairy. On the other hand, 
uncontrolled or excessive aggregation compromises 
digestibility, reduces amino acid bioavailability, induces 
syneresis, and contributes to undesirable hardness or 
dryness, all of which undermine consumer acceptance 
and nutritional value. The extent of aggregation is highly 
dependent on protein type, matrix composition, and 
processing intensity, emphasizing the need for system-
speci�ic strategies. Technological advancements are 
beginning to offer practical solutions. 
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